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Abstract

Camera traps are valuable tools in animal ecology for
biodiversity monitoring and conservation. However, chal-
lenges like poor generalization to deployment at new unseen
locations limit their practical application. In this work, we
leverage the structured context, such as spatiotemporal data
and biological taxonomy associated with the camera trap
images, to improve out-of-distribution generalization for
species identification in camera traps. For example, a photo
of a wild animal may be associated with information about
where and when it was taken, as well as structured biology
knowledge about the animal species. While typically over-
looked by existing work, bringing back such context offers
several potential benefits for better image understanding,
such as addressing data scarcity and enhancing generaliza-
tion. To effectively integrate such heterogeneous contexts
into the visual domain in a unified way, we propose a novel
framework that reformulates species classification as link
prediction in a multimodal knowledge graph (KG). We apply
this framework for out-of-distribution species classification
on iWildCam2020-WILDS dataset and achieve competitive
performance with state-of-the-art approaches.1

1. Introduction
Human activities are increasingly endangering wildlife
species, resulting in a significant global decline in animal
populations [2, 18, 35]. Therefore, accurately identifying
and tracking wildlife species is vital for preserving ecologi-
cal biodiversity. The use of camera traps [22, 42, 63] for data
collection has led to the increased use of computer vision
techniques for species recognition [1, 13, 28, 50, 53, 64].
Yet, a challenge has arisen: many of these models overfit to
the backgrounds of their training images, diminishing their

1Our code is available at https://github.com/OSU-NLP-
Group/COSMO

effectiveness on images from new locations [7, 37, 54]. This
underscores the need for more adaptable species classifica-
tion models that perform well across diverse contexts.

Building on this, cognitive science research has demon-
strated the profound influence of contextual information on
human perception and visual recognition processes [4, 5, 43].
Particularly in wildlife monitoring, camera trap images are
replete with crucial contextual data, such as where (i.e., cam-
era location coordinates) and when (i.e., timestamps) a photo
is taken. Furthermore, the structured knowledge of biology
taxonomy (e.g., Open Tree Taxonomy [44]) can also provide
valuable context for understanding the species in camera
trap images. Such context provides important knowledge
that can boost the recognition of visual concepts. For in-
stance, the knowledge that a certain feline image was taken
from a camera trap in Africa significantly reduces the like-
lihood of it representing a tiger. In addition, more robust
associations might be learned with the aid of contextual
information because the context provides invariable knowl-
edge that is unbiased towards variations in the illuminations
or angles of an image. This may help to compensate for
domain shifts in species images resulting from such varia-
tions and potentially lead to better out-of-distribution (OOD)
generalizability [6, 20].

Nevertheless, contextual information has been under-
exploited in the literature of image classification. Contextual
information in different modalities (e.g., numerical values,
textual descriptions, or structured taxonomies) is usually
represented separately from the image in distinct feature
spaces. The question of effectively combining features from
these different spaces within a unified learning framework
remains unanswered. Existing research typically treats all
the features as additional input to the classifier via feature
vector concatenation [6, 20, 30] or utilizes fusion to obtain
aggregate representations [15, 17]. Despite their simplicity,
such approaches are incapable of capturing complex struc-
tural and semantic relationships between images and various
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contextual information. Additionally, these approaches as-
sume a uniform availability of contextual information across
all images, which is often unrealistic in real-world scenar-
ios. As a result, their flexibility is limited, especially when
considering situations where certain images may lack some
contextual details, such as coordinates or timestamps, like in
camera trap photos.

Towards this end, we propose a new learning frame-
work, COSMO (Classification Of Species using Multimodal
cOntext), where we first organize all species images and con-
textual information as a multimodal knowledge graph (KG)
and then reformulate species classification as the standard
link prediction task on the KG. Specifically, we consider
species images, their corresponding labels (which are avail-
able in the training data), and their associated attributes pro-
vided in the context as entities within our KG (see Figure 1
for an example). We represent the relationships between
these entities as edges in our KG (see a more concrete de-
scription of our KG construction in Section 2.2). In this
context, species classification can be framed as a link predic-
tion task, where the objective is to predict the presence of an
edge between an image and its corresponding species label
within the KG. The learning process enables the interaction
of different modalities in a joint feature space for robust
representation learning. In addition, COSMO demonstrates
greater flexibility by not assuming uniform availability of all
contextual information, unlike previous methods.

The main contribution of this work is three-fold:
• We propose a novel framework, COSMO, that reformu-

lates species classification as link prediction in a multi-
modal knowledge graph, which provides a unified way to
incorporate heterogeneous forms of contextual informa-
tion associated with images for visual recognition.

• We instantiate this framework for wildlife species classifi-
cation, including the construction of a novel multimodal
knowledge graph that integrates spatiotemporal informa-
tion and structured biology knowledge.

• Evaluation on the iWildCam2020-WILDS dataset demon-
strates that COSMO achieves competitive performance
compared with standard species classification methods, es-
pecially in improving robustness and OOD generalization.

2. Methodology
2.1. Preliminaries
Multimodal KG. Given a set of KG entities with categorical
values EKG , multimodal entities EMM, and a set of relations
R, a multimodal KG can be defined as a collection of facts
F ✓ (EKG [ EMM)⇥R⇥ (EKG [ EMM) where for each
fact f = (h, r, t), h, t 2 (EKG [ EMM), r 2 R.
KG Link Prediction. The task of link prediction is to infer
missing facts based on known facts in a KG. Given a link
prediction query (h, r, ?) or (?, r, t), the model ranks the

target entity among the set of candidate entities.
Problem Setup. The task entails species recognition for
camera trap images amidst distribution shifts. The training
and test sets comprise images obtained from disjoint camera
traps. During training, we use the multimodal KG to train
our model, while we use just the image to make predictions
for inference. The goal is to learn visual representations
robust to distribution shifts by leveraging the rich structural
and semantic information provided by the multimodal KG.

2.2. Building the Multimodal KG

The multimodal KG comprises entities from different modal-
ities interconnected by heterogeneous relationships. The
base KG consists of camera trap images linked with their
species labels from the training set (<image>, instance
of, <species label>). Next, we progressively aug-
ment the KG with links connecting the existing entities to
contextual information. In this work, we utilize the following
attributes to provide context for species classification:
• Taxonomy: The taxonomy forms the core of the multi-

modal knowledge graph, connecting distinct species to
higher-order taxa. For iWildCam2020-WILDS, we obtain
the phylogenetic taxonomy corresponding to the species
of interest from Open Tree Taxonomy (OTT) [44] and
manually link it to the species in the dataset.

• Location: The camera trap images are associated with
the GPS coordinates of their source cameras. For
iWildCam2020-WILDS, this metadata is available for a
portion of the images (67%) and is obfuscated within 1 km.
for privacy reasons. Animals demonstrate a preference for
particular habitats; thus, the location context attribute is
useful for species recognition.

• Time: This timestamp information proves valuable in
species recognition since specific animals exhibit activity
patterns tied to particular times of the day, such as feeding,
hunting, or defending their territory. In our multimodal
knowledge graph, we utilize the timestamp information at
an hourly granularity.

Figure 1 presents a schematic representation of vari-
ous contexts in a multimodal KG. For location, time,
and taxonomy attributes, the corresponding RDF triples
can be represented as (<image>, location, <GPS

co-ordinate>), (<image>, time, <timestamp>),
and (<taxon 1>, parent, <taxon 2>), respectively.

2.3. Model Architecture

We use DistMult [66], a strong baseline on KGE bench-
marks, as our backbone KG embedding model.2 Note that
COSMO is a general framework that can leverage a variety of
KG embedding models proposed in the literature. DistMult

2Recent work [49] showed that simple baselines like DistMult outper-
form more sophisticated neural network baselines when trained properly.
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Figure 1. Overview of our framework COSMO. Left: Our multimodal knowledge graph for camera traps and wildlife. Photos from
camera traps are jointly represented in the KG with contextual information such as time, location, and structured biology taxonomy. The
taxonomy is obtained from Open Tree Taxonomy (OTT) [44]. Right: In our formulation of species classification as link prediction, the
plausibility score  (s, r, o) of each (subject, relation, object) triple is computed using a KGE model (e.g., DistMult), where the subject,
relation, and object are all first embedded into a vector space. Specifically, for our multimodal KG, we represent visual entities using
a ResNet-50 pre-trained on ImageNet and represent numerical entities using an MLP. For categorical entities and relations, we directly
represent them with embedding lookups

minimizes a bilinear scoring function between the entity em-
beddings of subject and object entities. For a given triplet
(h, r, t), the scoring function of DistMult is defined as

 (h, r, t) = hTWrt =
dX

i=1

hi · diag(Wr)i · ti (1)

Here, h and t denote the vector representations of the head
entity and tail entity, respectively. The relation representation
is parameterized by Wr 2 Rd⇥d, a diagonal matrix.

2.3.1 Multi-modality Encoders

We use an ImageNet pre-trained ResNet-50 [23] as the im-
age encoder. The base feature of each location is represented
as a 2D vector [latitude, longitude]. Following
prior work [47], we use an MLP to project the 2D location
feature to a higher dimensional space. Similarly, for tempo-
ral context, we use an MLP to project the integer value of the
hour timestamp to the higher dimensional embedding space.
For categorical entities such as species labels and taxa, we
learn dense embeddings as representations.

2.3.2 Training

We train the model using an optimization strategy based on
the modality of the tail entity. For categorical attributes, we

formulate it as a multi-class classification problem and use
standard cross-entropy loss to train the model. For instance,
in case of a given image-species label ground truth triple
(I,instance of, s), the loss is defined as L(I,io, s) =
� log exp( (I,io,s))P

s
02S

exp( (I,io,s0 )) , where S denotes the set of all

species labels, and io denotes the relation instance of.

For numerical attributes such as location and time, we for-
mulate it as a multi-class multi-label classification problem
and use a binary cross-entropy loss to optimize the parame-
ters. This choice is motivated by the fact that images can be
associated with a range of GPS coordinates and timestamps,
e.g., most animals are active multiple times during the day.
The label space comprises all entities of ground truth modal-
ity. For instance, in the case of a given time modality ground
truth triple (I,time, t), the loss is defined as:

L(I,time, t) = �
X

t0

lI,time
t0

· log(�( (I,time, t
0
)))+

(1� lI,time
t0

) · (1� log(�( (I,time, t
0
)))),

where lI,time
t0

is a binary label that indicates whether the
triple (I, time, t

0
) exists in the set of observed triples and

�(·) is the sigmoid activation function. We train the model by
sequentially minimizing the objective on each type of context
triple. Figure 1 illustrates the overall model architecture.



Model Multi-modality Val. Acc. (%) Test Acc. (%)
Taxonomy Location Time

Empirical Risk Minimization (ERM) [28]

–

62.7 (±2.4) 71.6 (±2.5)
CORAL [58] 60.3 (±2.8) 73.3 (±4.3)

Group DRO [24] 60.0 (±0.7) 72.7 (±2.0)
Fish [56] 58.0 (±0.2) 63.2 (±0.7)

ABSGD [48] – 72.7 (±1.8)
MLP-concat 3 3 27.3 (±0.8) 39.6 (±1.0)

COSMO (no-context) – 63.2 (±0.4) 68.8 (±2.1)

Si
ng

le
co

nt
ex

t

COSMO
3 62.8 (±2.2) (-0.4) 72.4 (±2.5) (+3.6)

3 64.4 (±1.0) (+1.2) 74.5 (±3.6) (+5.7)
3 64.7 (±0.4) (+1.5) 71.1 (±3.1) (+2.3)

M
ul

tip
le

co
nt

ex
ts

COSMO

3 3 65.4 (±0.4) (+2.2) 70.4 (±2.1) (+1.6)
3 3 64.9 (±1.6) (+1.7) 73.7 (±3.8) (+4.9)

3 3 63.0 (±2.1) (-0.2) 74.2 (±2.2) (+5.4)
3 3 3 65.0 (±1.6) (+1.8) 71.5 (±2.8) (+2.7)

Table 1. Species Classification results on iWildCam2020-WILDS (OOD) dataset. The first baseline in the second section shows the
no-context baseline that uses only image-species labels as KG edges. All models use a pre-trained ResNet-50 as image encoder. Parentheses
show standard deviation across 3 random seeds. We highlight the best result in bold and the second best with underline. We mark the
improvements over COSMO (no-context) in green. Missing values are denoted by –.

3. Experimental Setup
3.1. Datasets

We test our approach on the iWildCam2020-WILDS
dataset [28], a variant of the iWildCam 2020 dataset [9].
iWildCam2020-WILDS is a benchmark dataset designed to
test out-of-distribution (OOD) generalization for the task of
species classification. It consists of wildlife images collected
from camera traps, heat or motion-activated cameras placed
in the wild [63]. Each domain corresponds to a different
location of the camera trap. The training and test images
belong to disjoint sets of locations in the OOD setting.

3.2. Baselines

We use the COSMO with no context that uses just the species
label edges as our baseline. In addition, we compare with
the following baseline algorithms for OOD generalization:
Empirical Risk Minimization (ERM) [28], which trains the
model to minimize average training loss, CORAL [58], a
method for unsupervised domain adaptation that learns do-
main invariant features, Group DRO [24], an algorithm that
uses distributionally robust optimization to perform well on
subpopulation shifts, Fish [56] that attempts domain adapta-
tion using gradient matching, and ABSGD [48], an optimiza-
tion method for addressing data imbalance. As an alternative
way of incorporating contextual information, we implement
MLP-concat, a baseline which utilizes the location and tem-
poral features at both training and inference time. It uses

vanilla concatenation to fuse visual and spatiotemporal rep-
resentations which are then fed into an MLP. The missing
features are substituted by a mean value computed over the
training dataset. All models use a pre-trained ResNet-50
as image encoder. We evaluate the models using overall
accuracy as the metric.

4. Results

4.1. Performance Comparison with Addition of
Multimodal Context

We add taxonomy, location, and temporal context informa-
tion to the base KG and observe the impact on the species
classification performance. Table 1 shows the results for
the iWildCam2020-WILDS dataset. We make the following
observations from these results:

Firstly, the addition of one or more contexts results in a
performance gain over the no-context baseline in the vast
majority of cases. For instance, in the case of COSMO
with taxonomy, we obtain a 3.6% improvement over the
no-context baseline in terms of test accuracy. Incorporating
location context produces a notable 5.7% enhancement in
test set accuracy, underlining the significance of auxiliary
information for improved out-of-domain generalization. We
further analyze the role of location in predicting the species
distribution in Section 4.3. Additionally, utilizing the time at-
tribute yields a substantial improvement over the no-context
baseline, resulting in a 2.3% performance gain.



Secondly, we observe that the use of multiple contexts
results in a performance boost in a majority of cases. For in-
stance, the addition of location and time attributes improves
over the taxonomy baseline by a margin of 2.6% and 2.1%
respectively in terms of validation set accuracy. Similarly,
the taxonomy with time baseline obtains an improvement
of 1.3% and 2.6% over the taxonomy and time baselines,
respectively in terms of test accuracy. Please refer to the
supplementary material for additional results and analysis.

4.2. Comparison with OOD Generalization Ap-
proaches

We compare the performance of the COSMO with methods
specifically designed for out-of-domain generalization. No-
tably, our best-performing model, which uses location as
context, achieves state-of-the-art performance in terms of
OOD test accuracy, outperforming the existing SOTA model
(CORAL) by 1.2% on the iWildCam2020-WILDS dataset.
This demonstrates the effectiveness of leveraging diverse
multimodal contexts for achieving more robust OOD gen-
eralization, even in the absence of sophisticated objectives
aimed at improving domain generalization, e.g., CORAL
[58], Group DRO [24], ABSGD [48], and Fish [56]. The
MLP-concat baseline overfits to the training camera trap
locations on the iWildCam2020-WILDS dataset, resulting
in suboptimal performance. COSMO outperforms the MLP-
concat baseline by a significant margin.

(a) Each color square shows the
distance between the correspond-
ing validation cluster centroid on
x-axis and the training cluster cen-
troid on y-axis. The correlation
peaks along the diagonal (high-
lighted in red)3.

(b) Each color square shows the
distance between the correspond-
ing training hour slot on x-axis
and validation hour slot on y-axis.
The correlation peaks for day-day
and night-night hour slots (high-
lighted in red).

Figure 2. Correlation analysis for location and time attributes. Best
viewed in color.

4.3. Correlation Analysis for Location and Time
Attributes

We examined the relationship between species distribution
and numerical attributes, such as location and time, to gain
insights into how these contexts contribute to the task. The
location coordinates can be grouped into six clusters. For
each pair of cluster centroids, we compute the Bhattacharyya
distance [11], a measure of similarity between probability

distributions, between the training and validation set species
distributions (Figure 2a). Similarly, we plot the distance be-
tween species distributions corresponding to each hour of the
day (Figure 2b). We observe that the similarity (corresponds
to lower distance) peaks along the diagonal for the location
attribute, as well as for the day/night categorization of the
time attribute. This suggests these metadata give a prior for
species class distribution.

5. Discussion and Conclusion
In this work, we presented a novel framework in which the
species classification task is reformulated as link prediction
in a multimodal KG of species images and their diverse
contextual information. This enables a unified way to lever-
age various forms of multimodal context, e.g., numerical,
categorical, and taxonomy information associated with im-
ages for species classification in camera traps. Through our
experiments, we demonstrate that our framework achieves
superior out-of-distribution generalization and competitive
performance with state-of-the-art for species classification
on the iWildCam2020-WILDS dataset.

We assume that there is a perfect linkage between these
contexts and the corresponding images in the training set.
However, in scenarios where such linkage is unavailable,
the training procedure may introduce noise, which could
lead to inferior generalization capabilities in the model. Ad-
ditionally, it is important to note that the effectiveness of
diverse contexts varies based on their informativeness for
the given task. Interestingly, combining two or more con-
texts could degrade performance compared to using a single
context type in some cases (Table 1). We posit that specific
metadata, like location, might have a stronger regularization
effect on improving generalization in species recognition
tasks than other metadata. To address this, future work will
involve enabling the model to assign greater importance to
more informative metadata.

Furthermore, we are interested in training a foundation
model for camera trap species classification across a wider
spectrum of species. This model should demonstrate en-
hanced generalization capabilities for new camera trap se-
tups worldwide. Additionally, we aim to integrate a broader
spectrum of diverse contexts such as temperature, weather
conditions, habitat, and sequence information for use with
real-world camera trap deployments.

3The null value in row 4 is due to the absence of species overlap with
respective validation clusters. The null value in columns 3 and 4 indicates
the absence of these clusters in the validation set.
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